Abstract

In this study, foam concrete was produced using 3 different volumes of EPS beads (up to 100%), 3 different volumes of polypropylene(PP) fiber (up to 0.1)%, sand and 40% pre-produced foam which is fixed by volume. The water-cement ratio was 0.4 and the sand-cement ratio was chosen as 1. The foam concrete were cast into molds with a size of 100 x 100 x 500 mm and 150 x 150 x 150 mm prism. Unit weight, ultrasonic pulse, water absorption, splitting tensile strength, bending strength and compressive strength tests were achieved. Foam concrete were kept in laboratory standard conditions. According to the results of study, unit weight and ultrasonic pulse velocity vary between 970-1350 kg/m3 and 1.6-2.6 km/sec, respectively. The water absorption of the foam concrete decreased up to 65% as the EPS beads ratio increased. Since EPS beads do not contribute to the strength and act like a void, splitting tensile strength in specimens containing EPS beads decreased by up to 70%. The use of fiber contributes to the splitting tensile strength, especially in specimens that do not contain EPS beads, and it increased the strength by 78%. Similarly, the flexural strength of the PP fiber addition increased by up to 70%. As the EPS beads ratio increased, the flexural strengths decreased by 77%. With the addition of PP fiber, the compressive strength increased by 55%. However, since EPS beads' strength is negligible, it caused a 60% decrease in compressive strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.