Abstract

Previous literature revealed that genistein might play a preventive role in osteoporosis. Therefore, we aimed to evaluate the effect of genistein on the osteogenic potency of laying hens’ adipose-derived stem cells (LHASCs). The viability of LHASCs after isolation was investigated on tissue culture plastic (TCP) under exposure to genistein up to 50 μg/mL by MTT assay. Our preliminary result revealed that LHASCs cultured under genistein exposure up to 20 μg/mL are feasible. Then, we evaluated the osteogenic induction of LHASCs under exposure to 0, 10, and 20 μg/mL genistein. The Alizarin Red staining confirmed the calcium deposition. Our findings showed that osteogenic differentiation under exposure to 20 μg/mL genistein led to higher ALP activity and more calcium content. We then tried to see the probable additive effect of the genistein-plus Poly-L-lactic acid (PLLA) scaffold on the cell viability and osteogenic capacity of LHASCs. For this, cells were cultured on a PLLA scaffold and exposed to 20 μg/mL genistein. Cell growth rate, as indicated by the MTT assay, revealed no differences between the groups. LHASCs cultured on a genistein-plus PLLA scaffold showed higher ALP activity and more calcium content. The expressions of Osteocalcin, COL1A2, ALP, and Runx2 genes were increased in the genistein-plus PLLA group as compared with PLLA and TCP groups. Adequate proliferation rates and higher expression of osteogenic markers provide genistein as a suitable substrate to support the proliferation and differentiation of LHASCs. Genistein supports osteogenic induction as a further positive effect if such a PLLA scaffold is available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call