Abstract

Cetane improvers reduce the ignition delay, which in turn reduces the combustion temperatures thereby reduce NOx emissions. Exhaust gas recirculation (EGR) proved to be an effective way to reduce the NOx emissions. In this present experimental work, a combination of exhaust gas recirculation and cetane improver ethyl hexyl nitrate (EHN) is used to investigate the performance and exhaust emissions of a single cylinder four stroke naturally aspirated direct injection and air cooled diesel engine. Test results show that the brake thermal efficiency increases with the increase in the percentage of EGR which is accompanied by a reduction in brake specific fuel consumption and exhaust gas temperatures, and that biodiesel with cetane improver under 20% EGR reduces NOx emissions by 33% when compared to baseline fuel without EGR. However carbon monoxide (CO), hydro carbon (HC) and smoke emissions increase with an increase in percentage of EGR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call