Abstract

In this study, the effect of exciton-blocking layer (EBL), employed between the electron-transporting layer (ETL) and the undoped host spacer layer, on the characteristics of fluorescent/phosphorescent multilayer white organic lightemitting diode (OLED) is investigated numerically with the APSYS (Advanced Physical Model of Semiconductor Devices) simulation program. The validation of simulation model is confirmed by the good agreement of photoelectric characteristics between the results obtained numerically and those obtained experimentally. Simulation results suggest that singlet excitons and triplet excitons are generated at both hole-transporting layer (HTL)/emitting layer (EML) and EML/ETL interfaces, where electrons and holes accumulate and recombine, with certain thickness of host spacer layers employed on both sides of EML of white OLED structure. Further study shows that a better choice for the trade-off between color stability and electroluminescence (EL) efficiency can be achieved by properly adjusting the number of EBLs. An optimized performance is achieved if two pairs of EBLs are used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.