Abstract

The aim of present study was to enhance the dissolution rate of poorly water-soluble drug aceclofenac by solid dispersion technique using corn starch, dicalcium phosphate, lactose, and microcrystalline cellulose as carriers. Solid dispersions were prepared by solvent wetting method using 3(2) full factorial design for each of the carrier. The prepared solid dispersions were evaluated for differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy (FTIR), and angle of repose. In vitro dissolution studies were carried out in phosphate buffer (pH 7.5) and 0.1 N HCl (pH 1.2). The results of solid state characterization bring to view that in solid dispersions the crystalline drug gets converted to its amorphous form. FTIR study results indicated the absence of interaction between aceclofenac and carriers. For prepared solid dispersions, angle of repose was found to be in the range of 26.19° to 35.29°, which indicates good flowability. Enhanced drug dissolution was obtained with carrier in order lactose > corn starch > microcrystalline cellulose > dicalcium phosphate. Hence, these carriers could be used to enhance the dissolution rate of poorly water-soluble drug.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call