Abstract

Friction-type bolted joints are widely used in both the civil and aerospace industries. Uncontrolled excessive bolt clamping force can cause damage to the laminated fiber-reinforced polymeric (FRP) composite through the thickness and damage the joint before applying the service loads. The effect of the friction coefficient (between 0 and 0.3), bolt clearance, joint type, and other parameters on failure modes and the maximum bolt clamping force of the carbon FRP lapped joint is studied. A three-dimensional finite element (FE) model consisting of a bolt, a washer, a laminate FRP composite plate, and steel plates was developed for the simulation of the double- (3DD) and single (3DS)-lapped bolted joint. The FE model was validated by using experimental results and was able to predict the experimental results by a difference of between 2.2 and 6.7%. The joint capacity of the clamping force was found to be greatly increased by adopting the double lap technique, which involves placing an FRP composite plate between two steel plates. Also, it was recommended to use an internal washer diameter less than or equal to the FRP composite plate hole diameter since a larger washer clearance can produce higher contact pressure and reduce the resistance by 22%. In addition, reducing the bolt head diameter can lead to a 65% reduction in the 3DS joint clamping strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call