Abstract

A series of Pb(1+x)TiO3/PbZr0.3Ti0.7O3/Pb(1+x)TiO3 (PTO/PZT/PTO) and PbZr0.3Ti0.7O3 (PZT) thin films were prepared by a sol–gel method. Different excess Pb content (x) (x = 0, 0.05, 0.10, 0.15, 0.20) were added to the PbTiO3 (PTO) precursors to investigate their effect on ferroelectric and fatigue properties of the PTO/PZT/PTO thin films. X-ray diffraction results show that the crystallization behavior of the PTO/PZT/PTO thin films is greatly affected by the excess Pb content (x) in PTO precursors. Topographic images show that the PTO/PZT/PTO thin films with excess Pb content x = 0.10 appears the densest and the most uniform grain size surface morphology. The ferroelectric and fatigue properties of the films correlate straightforwardly to the crystallization behaviors and excess Pb content (x) in the PTO precursors. The excess Pb content (x) in the PTO layers which acts as a nucleation site or seeding layer for PZT films affects the crystallization of the PTO layer and ultimately affects the perovskite phase formation of the PZT films. With the proper excess Pb content (x = 0.10–0.15) in the PTO precursors, the pure perovskite structure PTO/PZT/PTO thin films, with dense, void-free, and uniform fine grain size are obtained, and a well-saturated hysteresis loop with higher remnant polarization is achieved. Using an appropriate Pb content, the fatigue has been avoided by controlling the inter-diffusion and surface volatilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.