Abstract

Successful genetic treatment of most primary immunodeficiencies or hematological disorders will require the transduction of pluripotent, self-renewing hematopoietic stem cells (HSC) rather than their progeny to achieve enduring production of genetically corrected cells and durable immune reconstitution. Current ex vivo transduction protocols require manipulation of HSC by culture in cytokines for various lengths of time depending upon the retroviral vector that may force HSC to enter pathways of proliferation, and possibly differentiation, which could limit their engraftment potential, pluripotentiality and long-term repopulating capacity. We have compared the ability of normal CD34(+) cells cultured in a standard cytokine cocktail for 18hours or 4.5 days to reconstitute XSCID dogs following bone marrow transplantation in the absence of any pretransplant conditioning with that of freshly isolated CD34(+) cells. CD34(+) cells cultured under standard gamma-retroviral transduction conditions (4.5 days) showed decreased engraftment potential and ability to sustain long-term thymopoiesis. In contrast, XSCID dogs transplanted with CD34(+) cells cultured for 18hours showed a robust T cell immune reconstitution similar to dogs transplanted with freshly isolated CD34(+) cells, however, the ability to sustain long-term thymopoiesis was impaired. These results emphasize the need to determine ex vivo culture conditions that maintain both the engraftment potential and "stem cell" potential of the cultured cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.