Abstract

Abstract Lignocellulosic biomass extracted from plants that contain rich amounts of cellulose, hemicellulose, and lignin content can replace synthetic fibers in many engineering applications and is biodegradable. However, e-waste is rapidly evolving into one of the most serious environmental issues in the world owing to the presence of several toxic compounds that can contaminate the environment and pose a threat to human health. Printed circuit boards (PCBs) are one of the major components available in e-waste. In this research work, waste PCB (WPCB) powder is mixed in suitable proportions of 5%, 10%, 15%, and 20% with a lignocellulosic sisal woven fabric fiber mat, and blended with epoxy resin using the vacuum-assisted hand lay-up method. To determine the effect of particle size on the fabricated composites, mechanical, thermal, water absorption, surface roughness, and wear tests were conducted. It was found that the composition that contains 15% nanofiller composites gave better results in mechanical testing than the composition that contains 10% microfiller composites. Pin-on disc wear test and differential scanning calorimetric thermal test results show that 10% microfiller composites show better outcome results than 15% nanofiller composites. Testing values indicate that lignocellulosic sisal fiber composites with WPCB nano- and microfillers can be substituted for many engineering applications instead of being disposed of in landfills.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.