Abstract

The effect of ethylenediamine (EDA) treatment on cellulose nanofibers (CNFs) remains unclear. To study the effect of EDA treatment on the gelation of the fibrillated CNFs, hydrogels that received 1, 2, and 3 EDA-treatment/washing cycles were prepared and analyzed. Different concentrations of the EDA treatment were also used to prepare hydrogels. Both X-ray diffraction and Fourier transform infrared studies showed that cellulose I/II hybrid hydrogels were fabricated from CNFs via 2 or 3 cycles of 99 wt% EDA treatment and then were washed with water. Field emission scanning electron microscopy observations indicated that the obtained CNF-based hydrogels presented some aggregations via the coalescence of adjacent individual CNFs. Moreover, the hydrogel film with a cellulose I/II crystal structure showed a higher tensile strength of 2.4 MPa and a fracture strain of 23.5%. This was because it had an entangled continuous nanonetwork structure formed after repeated EDA treatment. The authors hope that this work can further stimulate interest in the development of CNF-based hydrogels with multiple structures, properties, and functions for a variety of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.