Abstract

The effect of ethanol on human serum albumin stability in aqueous solution was studied by use of differential scanning calorimetry. A deconvolution of DSC traces in 2-state model with ΔC p=0 and ΔC p≠0 was performed and analysed to obtain information on the interaction of ethanol with different parts of albumin molecule both fatty acid containing and fatty acid free. The differences in ethanol binding affinity for both kinds of albumin were found. At very low concentrations ethanol was observed to be a stabilizer of the folded state of albumin contrary to the higher concentration where its binding to the unfolded protein predominates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call