Abstract

Estradiol (E2) induces a complementary increase in both the amount of mRNA and the rate of translation of the mRNA in the uterus of ovariectomized mature rats. The mechanism of the translational effect was evaluated by measuring the functional capacity of uterine tRNA isolated from control, E2 (1 h)- and E2 (14 h)-treated ovariectomized rats to support amino acid acceptor activity and uterine protein synthesis. The specific amino acid acceptor activity (SAA) of deacylated tRNA for 18 individual amino acids was determined using a tRNA-dependent rat liver tRNA synthetase preparation. The SAA was the same for all amino acids for uterine tRNA from control and E2 (1 h)-treated rats but was increased for uterine tRNA from E2 (14 h)-treated rats to levels that were 1.4-4.3 times the SAA of uterine tRNA from control rats. When uterine tRNA from control and E2 (14 h)-treated rats was incubated with purified tRNA nucleotidyltransferase, the SAA for all amino acids was increased an average of 1.6-fold for control tRNA and 0.3-fold for tRNA from E2 (14 h)-treated rats. The ability of uterine tRNA to support maximal rates of protein synthesis in tRNA-dependent uterine ribosome protein synthesis assay was increased by either in vivo treatment of the rats with estradiol or by in vitro repair of the 3'-CCA terminus of this tRNA by nucleotidyltransferase. These observations suggest that E2 may increase the rate of mRNA translation in the uterus, in part, by increasing the proportion of certain tRNAs with intact and functional 3'-CCA acceptor termini.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.