Abstract
Previous studies in our laboratory have identified a set of mutations in the Escherichia coli dnaE gene that confer increased accuracy of DNA replication (antimutators). The dnaE gene encodes the polymerase subunit of DNA polymerase III holoenzyme that replicates the E. coli chromosome. Here, we have investigated their effect on mutagenesis by the base analog N 4-aminocytidine (4AC). For three different mutational markers, rifampicin resistance, nalidixic acid resistance and lacI forward mutagenesis, the dnaE911 allele reduced 4AC-induced mutagenesis by approximately 2.5-fold, while the dnaE915 allele reduced it by 2.5-, 3.5- and 6.5-fold, respectively. We also investigated the dependence of 4AC mutagenesis on mutations in the MutHLS mismatch repair system and the UvrABC nucleotide excision repair system. The results show that mutagenesis by 4AC is unaffected by defects in either system. The combined results point to the critical role of the DNA polymerase in preventing mutations by base analogs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.