Abstract

A continuous-wave (cw) near-infrared spectroscopy (NIRS) instrument has been developed to noninvasively quantify fetal cerebral blood oxygen saturation (StO2). A linear Green's function formulism was used to analytically solve the photon diffusion equation and extract the time-varying fetal tissue oxy- and deoxy-hemoglobin concentrations from the NIR measurements. Here we explored the accuracy with which this instrument can be expected to perform over a range of fetal hypoxic states. We investigated the dependence of this accuracy on the accuracy of the reference optical properties chosen based on the literature. The fetal oxygenation of a pregnant ewe model was altered via maternal aortic occlusion. The NIR cw instrument was placed on the maternal abdomen directly above the fetal head, continuously acquiring diffuse optical measurements. Blood was sampled periodically from the fetus to obtain fetal arterial saturation (SaO2) measurements from blood gas analysis. The NIR StO2 values were compared with the fetal SaO2 measurements. Variations in the NIR results due to uncertainty in the reference optical properties were relatively small within the fetal SaO2 range of 30 to 80%. Under hypoxic conditions, however, the variability of the NIR StO2 calculations with changes in the assumed reference properties became more significant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call