Abstract

Digital image modification or image forgery is easy to do today. The authenticity verification of an image become important to protect the image integrity so that the image is not being misused. Error Level Analysis (ELA) can be used to detect the modification in image by lowering the quality of image and comparing the error level. The use of deep learning approach is a state-of-the-art in solving cases of image data classification. This study wants to know the effect of adding ELA extraction process in the image forgery detection using deep learning approach. The Convolutional Neural Network (CNN), which is a deep learning method, is used as a method to do the image forgery detection. The impacts of applying different ELA compression levels, such as 10, 50, and 90 percent, were also compared in this study. According to the results, adopting the ELA feature increases validation accuracy by about 2.7% and give the better test accuracy. However, the use of ELA will slow down the processing time by about 5.6%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.