Abstract

In order to study the effects of particle properties on the solid particle erosion mechanisms of brittle bulk materials, six target materials were tested using two different powders (alumina and glass) at velocities ranging from 25 to 75 m/s. Following in depth characterizations of the targets and of the particles before and after testing, it was found that lateral fracture was the dominant material removal mechanism as predicted by the elasto-plastic theory of erosion. In the case of glass powder, for which the hardness of the particle is lower than the hardness of the target, particle deformation and fragmentation were found to be important factors explaining lower erosion rates. The higher than predicted velocity exponents point toward a velocity-dependent damage accumulation mechanism which was found to be correlated to target yield pressure (H3/E2). Although damage accumulation seems to be necessary for material removal when using both powders, the effect is more pronounced for the softer glass powder because of kinetic energy dissipation through different means.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.