Abstract

Abstract The structural, optical, mechanical, electrical and nonlinear properties of standard Ammonium Dihydrogen Phosphate (NH4H2PO4, ADP) single crystals incorporating organic Erioglaucine dye dopant are presented. The effect of Erioglaucine dye dopant at varied concentration on these properties has been investigated through measurement of powder X-Ray Diffraction (XRD), UV–Vis and photoluminescence spectroscopy, Vickers microhardness, light dependent I–V measurements and Second Harmonic Generation studies. These measurements reveal that doping with increasing dye concentration of Erioglaucine leads to change in properties of the ADP single crystals, making them suitable for optoelectronic applications. The Erioglaucine doped ADP single crystals were grown using solvent evaporation technique at room temperature. Optical properties like absorbance and emission of these crystals are determined using UV–vis and photoluminescence spectroscopy, respectively. Optical bandgap and photoluminescence of the crystals are found to increase with dye doping, indicating their suitability in photonic applications. The mechanical properties of the crystals are determined using Vickers microhardness measurement technique. Light dependent I–V measurements exhibit negative photoconductivity behavior of the ADP crystals. However, the current through the crystals is observed to increase with increase in doping concentration of the Erioglaucine dye. Second Harmonic Generation studies show enhancement in nonlinearity for doped crystals. Our experiments indicate gradual variance in the crystallinity, emission, hardness, conductivity and nonlinearity of the sample with change in dye concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call