Abstract

Cell membranes are complex multicomponent systems consisting of thousands of different lipids with numerous embedded membrane proteins and many types of sterols. We used all-atom and coarse-grained molecular dynamics simulations to study the structural and dynamical properties of phospholipid bilayers containing four types of phospholipids and different amount of ergosterol, main sterol component in the fungal membranes. To characterize the influence of ergosterol on the membrane properties we analyzed the surface area per lipid, bilayer thickness, area compressibility modulus, mass density profiles, deuterium order parameters, and lateral diffusion coefficients. The presence of ergosterol induces the ordering of lipids leading to their denser packing, to reducing the lateral diffusion of lipids and lipid surface area, to increasing the thickness of bilayer and compressibility modulus. In addition, we evaluated each calculated property between the two simulation methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call