Abstract
Elucidation of the mechanism of adsorption of particles suspended in the gas-phase (aerosol) to the outer surfaces of leaves provides useful information for understanding the mechanisms of the effect of aerosol particles on the growth and physiological functions of trees. In the present study, we examined the localization of artificially deposited sub-micron-sized carbon-based particles on the surfaces of needles of Cryptomeria japonica, a typical Japanese coniferous tree species, by field-emission scanning electron microscopy. The clusters (aggregates) of carbon-based particles were deposited on the needle surface regions where epicuticular wax crystals were sparsely distributed. By contrast, no clusters of the particles were found on the needle surface regions with dense distribution of epicuticular wax crystals. Number of clusters of carbon-based particles per unit area showed statistically significant differences between regions with sparse epicuticular wax crystals and those with dense epicuticular wax crystals. These results suggest that epicuticular wax crystals affect distribution of carbon-based particles on needles. Therefore, densely distributed epicuticular wax crystals might prevent the deposition of sub-micron-sized carbon-based particles on the surfaces of needles of Cryptomeria japonica to retain the function of stomata.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.