Abstract

A new enzymatic hydrolysis-based process inspired by the Maillard reaction can produce strong flavored, high-value rapeseed oil that meets safety requirements. In the present study, the effect of reaction time (10-30 min) and temperature (130-160 °C) on the physicochemical properties, nutritional status, fatty acids composition and key aroma compounds of fragrant rapeseed oil (FRO) was investigated. An increasing reaction time and temperature substantially decreased the total tocopherol, polyphenol and sterol contents of FRO, but increased benzo[a]pyrene content, as well as the acid and peroxide values, which did not exceed the European Union legislation limit. Among the volatile components, 2,5-dimethyl was the main substance contributing to the barbecue flavor of FRO. The 150 °C for 30 min reaction conditions produced a FRO with a strong, fragrant flavor, with high total tocopherol (560.15 mg kg-1 ), polyphenol (6.82 mg kg-1 ) and sterol (790.65 mg kg-1 ) contents; acceptable acid (1.60 mg g-1 ) and peroxide values (4.78 mg g-1 ); and low benzo[a]pyrene (1.39 mg g-1 ) content. These were the optimal conditions for the enzymatic Maillard reaction, according to the principal component analysis. Furthermore, hierarchical cluster analysis showed that reaction temperature had a stronger effect on FRO than reaction time. The optimal enzymatic Maillard reaction conditions for the production of FRO are heating at 150 °C for 30 min. These findings provide new foundations for better understanding the composition and flavor profile of FRO, toward guiding its industrial production. © 2023 Society of Chemical Industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call