Abstract

Flexural creep behavior of nylon 6/6 (NY66)– and polypropylene (PP)– based long fiber ( l/ d = 2000−10 000) thermoplastic (LFT) composites was investigated as a function of ultraviolet irradiation and moisture absorption. Extrusion/compression-molded panels were prepared according to ASTM D-2990 and conditioned according to ASTM D-618. NY66 and PP LFTs were characterized using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier-transform infrared (FTIR) spectroscopy in the unexposed condition, and as-exposed to 253.7 nm UV radiation. The creep compliance of PP LFT increased with increasing UV exposure, whereas the creep compliance of NY66 LFT showed a moderate decrease with increasing UV exposure. Moisture absorption experiments were performed in boiling water until saturation on NY66 and its LFT composites. Characterization of desorbed moisture absorption specimens suggested slight variation in the structure, and an analysis of creep compliances showed minimal changes as compared to the dry/unexposed specimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.