Abstract

Based on a method of molecular structural mechanics (MSM), the effect of environmental temperature on elastic properties of armchair and zigzag single-walled carbon nanotubes is investigated. Single-walled carbon nanotubes with different chiral vectors are considered as a molecular structural mechanics model, which is composed of the discrete molecular structures through the carbon-to-carbon bonds. By considering the effect of environmental temperature on force constant values of the bonds stretching, bonds angle bending and torsional resistance, the corresponding basic parameters of a truss of the single-walled carbon nanotubes are obtained in different environmental temperatures, respectively. Nanoscale structural mechanics simulation for the elastic properties of single-walled carbon nanotubes in different environmental temperatures reveals that the elastic modulus of single-walled carbon nanotubes decreases significantly with the increase of environmental temperature. It is noted that the Young's modulus of single-walled carbon nanotubes is more sensitive to environmental temperature than the shear modulus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call