Abstract

To ascertain the response of phytoplankton size classes to changes in environmental forcing, we determined size-fractionated biomass, carbon fixation and growth (production/biomass) rates in surface waters along the central Atlantic Ocean (26°N–5°S). As a result of the enhanced input of nutrients into the euphotic layer and the higher water column stability found at the equatorial upwelling, we observed increases not only in phytoplankton biomass and primary production, but also in turnover rates, suggesting nutrient limitation of phytoplankton physiology in the oligotrophic central Atlantic. The phytoplankton groups analysed (pico-, small nano-, large nano- and micro-phytoplankton) showed different responses to the equatorial environmental forcing, in terms of carbon biomass, primary production and growth rate. Large nano- and micro-phytoplankton consistently showed higher growth rates and carbon fixation to chl a ratios than smaller phytoplankton. We observed a higher stimulating effect of increased nitrate supply on the small phytoplankton growth rates. This observation can be explained by the dynamics of the equatorial upwelling, where the continuous but small nutrient input into the euphotic layer provide a competitive advantage for smaller cells adapted to oligotrophic conditions. The size-fractionated approach shown here reveals important group-specific differences in the response to environmental forcing, which cannot be appreciated in bulk measurements of the whole community.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call