Abstract

Bacillus thuringiensis (Bt) is a soil-dwelling, Gram-positive bacterium that is used as a biological pesticide and used to genetically engineer plants due to the toxic proteins it produces. B. thuringiensis was studied in batch cultures to determine the specific growth rates and doubling times. The purpose of this experiment was to research the growth kinetics of Bacillus thuringiensis in a 2L bioreactor and a 5L bioreactor containing growth media at different environmental conditions. Fermentation parameters were controlled by utilizing a Sartorius Stedim Biostat® A+ bioreactor system for bacterial growth. The environmental conditions included temperature, agitation, and aeration. The specific growth rates of B. thuringiensis were determined. The optimal conditions for the 2L bioreactor were 200 RPM, 30°C, 1.5 VVM, and with the highest specific growth rate 0.30 hr and the shortest doubling time 2.3 hr. For the 5L bioreactor, the optimal conditions were 150 RPM, 30°C, 1.5 VVM, and with the highest specific growth rate 1.2 hr and the fastest doubling time 0.6 hr.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call