Abstract

Hybrid fiber-reinforced polymer (FRP) rebar has emerged as one of the most promising and affordable solutions to the brittle failure problems of ordinary FRP rebar in concrete structures. Hybrid FRP rebar stress-strain curves are linearly elastic, and contain a definite yield point followed by plastic deformation. In this study, the long-term durability performance of hybrid FRP rebar is evaluated. The mechanical properties and durability of one type of carbon FRP rebar, one type of glass FRP rebar, and two types of hybrid FRP rebars are investigated. The rebar specimens are exposed to twelve different environments, including an alkaline solution, an acid solution, a salt solution, deionized water, and repeated freezing and thawing. Short-beam, tensile, and bond tests are used to analyze the mechanical properties and durability of the rebar. The experimental results confirm the desirable resistance of hybrid FRP rebar to aggressive environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.