Abstract
Environmental estrogens or estrogen disrupters have recently received a great deal of attention because of their potential health impact on reproductive tissues. Few, if any, studies have been made on the impact of these compounds on the immune system. We sought to determine the activities of various environmental estrogens on the modulation of the interleukin-1beta (IL-1beta) gene in a model monocytic cell line, hER + IL-1beta-CAT+. This cell line stably transfected with the human estrogen receptor, and an IL-1beta promoter construct fused to the CAT reporter gene allows us to monitor the effect of estrogenic compounds on IL-1beta promoter activity. 17beta-estradiol (E2) markedly enhanced lipopolysaccharide- (LPS) induced IL-1beta promoter-driven CAT activity in a dose-dependent manner. The mycotoxins alpha-zearalenol and zearalenone both exhibited full agonist activity, but at lower potencies, with EC50 values of 1.8 and 54 nM, respectively, compared with E2 at 0.5 nM. In addition, genistein was a very low-potency agonist, having an EC50 of 1.5 microM. Similar to the E2 response, the slope factors for alpha-zearalenol, zearalenone, and genistein were close to 3.0, suggesting positive cooperativity in the estrogenic response. The activity of the mycotoxins appeared to be mediated through the estrogen receptor, since both the antiestrogens H1285 and ICI 182,780 effectively inhibited their agonist activity in a dose-dependent manner. Representative environmental estrogenic compounds both from plant and industrial sources were also tested. Unlike the mycoestrogens, none of the compounds, with the exception of genistein, synergized with LPS to enhance IL-1beta promoter activity. When tested for antiestrogenic activity, the industrial compound 4-octylphenol was able to antagonize the response to E2; however, the response was three orders of magnitude less potent than H 1285. Naringenin, a plant flavonoid, showed little or no ability to antagonize the response to E2. Overall, the results show that some environmental estrogens that display agonist activity in reproductive tissue also have an effect on IL-1 gene expression in hemopoietic-derived tissue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.