Abstract

The principal aim of this investigation is to examine the gold and magnesium oxide hybrid nanoparticles in different physical capacities on the water-based hybrid nanofluid and elaborate on an erratic squeezing flow among both infinite plates. Melting effect and thermal radiation depict heat transfer features. Production of the Bejan number and entropy is upward. The explains the governing equations, and the standard transformation is supplied. The numerical solutions are carried out using an efficient finite element method. To analyze difference between heat transfer and its implication in industrial zone, the Nusselt number was arranged in a horizontal pattern. The results showed that a thicker thermal boundary layer increased the Eckert number and the volume fraction of gold nanoparticles. Anyhow, the heat transfer rate by Au–MgO/water was necessarily greater than the Au–water. The obtained results are excellent and vigorously oppose those that are applicable to the literature by the attached position. It was established for hybrid nanofluids to display higher entropy generation rates. The outcomes of this analysis were the consequence of the appraisal of the impact on few required form parameters in heat transfer and consequently on the expansion for industrial use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.