Abstract

A route to high-purity nanocrystalline diamond films from C2 dimers and related mechanisms have been investigated by enhancing C2 growth chemistry in Ar-rich microwave plasmas. Efficient C2 production by direct dissociation from acetylene causes the micro- to nanocrystal transition with a low threshold Ar concentration of ∼70% and produces films of ∼20nm grains with a distinct visible-Raman peak of diamond. C2 grows nanodiamond on diamond surfaces but rarely initiates nucleation on foreign surfaces. The phase purity can be improved by increasing the dominance of nanodiamond growth from C2 over nondiamond growth from CHx(x=0–3) and large radicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.