Abstract
Mid-level ethanol/gasoline blends can provide knock resistance benefits for stoichiometric spark-ignition engine operation, but previous studies have identified challenges associated with spray impingement and wall wetting, leading to excessive particulate matter emissions. At the same time, stratified-charge spark-ignition operation can provide increased thermal efficiency, but care has to be exercised to avoid excessive in-cylinder soot formation. In support of the use of mid-level ethanol/gasoline blends in advanced spark-ignition engines, this study presents spray and fuel-film measurements in a direct-injection spark-ignition engine operated with a 30 vol.%/70 vol.% ethanol/gasoline blend (E30). Crank-angle resolved fuel-film measurements at the piston surface are conducted using two different implementations of the refractive index matching technique. A small-angle refractive index matching implementation allows quantification of the wetted area, while a large-angle refractive index matching implementation enables semi-quantitative measurements of fuel-film thickness and volume, in addition to fuel-film area. The fuel-film measurements show that both the amount of fuel deposited on the piston and the shape of the fuel-film patterns are strongly influenced by the injection timing, duration, intake pressure, and coolant temperature. For combinations of high in-cylinder gas density and long injection duration, merging of the individual spray plumes, commonly referred to as spray collapse, can cause a dramatic change to the shape and thickness of the wall fuel films. Overall, the study provides guidance to engine designers aiming at minimizing wall wetting through tailored combinations of injection timings and durations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.