Abstract
PurposeThis study aims to achieve customized prosthesis for total joint arthroplasty and total hip arthroplasty. Selective laser sintering (SLS) as additive manufacturing could enable small-scale fabrication of customized Ultra High Molecular Weight Polyethylene (UHMWPE) components; however, the processes for SLS of UHMWPE need to be improved.Design/methodology/approachThis paper begins by improving the preheating system of the SLS fabricating equipment and then fabricating cuboids with the same size and cuboids with same volume and different size to study the warpage, demonstrating the effect of the value and uniformity of the preheating temperature on component fabrication. Warpage, density and tensile properties are investigated from the perspective of energy input density. Finally, complicated industrial parts are produced effectively by using optimized technological parameters.FindingsThe results show that components can be fabricated effectively after the optimization of the SLS technological parameters i.e. the preheating temperature the laser power the scanning interval and the scanning speed. The resulting warpage was found to be less than 0.1 mm along with the density as 83.25 and the tensile strength up to 14.1 Mpa. UHMWPE sample parts with good appearance and strength are obtained after ascertaining the effect of each factor on the fabrication of the sample parts.Originality/valueIt is very challenging to fabricate UHMWPE sample parts by SLS. This is a new step in the fabrication of customized UHMWPE sample parts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.