Abstract
Endurance training attenuates exercise-induced increases in blood lactate at the same submaximal work rate. Three intramuscular compounds that influence muscle lactate production were measured in fasted non-trained (NT) and endurance-trained (T) rats. The T rats were subjected to a progressive endurance-training program. At the end of the program (11 wk), they were running 2 h/day at 31 m/min up a 15% grade 5 days/wk. NT and T rats were fasted for 24 h and then anesthetized (pentobarbital, iv) at rest or after running for 30 min at 21 m/min (15% grade). Blood lactate levels were significantly lower in the T rats than in the NT rats after 30 min of running (2.3 +/- 0.2 vs. 3.9 +/- 0.2 mM). The lower blood lactate concentration was accompanied by lower plasma epinephrine (2.8 +/- 0.4 vs. 6.0 +/- 0.8 nM), adenosine 3', 3',5'-cyclic monophosphate (0.36 +/- 0.02 vs. 0.50 +/- 0.03 pmol/mg), mg), glucose 1,6-diphosphate (26 +/- 2 vs. 40 +/- 5 pmol/mg), and fructose 2,6-diphosphate (3.2 +/- 0.2 vs. 4.3 +/- 0.3 pmol/mg) in white quadriceps muscle in T than in NT rats. Red quadriceps muscle glucose 1,6-diphosphate and adenosine 3',5'-cyclic monophosphate were also lower in T than in NT rats. These adaptations may be responsible in part for the lower exercise-induced blood lactate in fasted rats as a consequence of endurance training.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of applied physiology (Bethesda, Md. : 1985)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.