Abstract

The present study aimed to investigate the mechanism(s) through which endoplasmic reticulum stress (ERS)-induced apoptosis, in the role of periodontitis, affects vascular calcification. Rat models of periodontitis, vascular calcification, periodontitis-vascular calcification, and a normal group were established. Cardiovascular tissues were obtained, and hematoxylin-eosin staining was applied to demonstrate the morphological changes in vascular tissues. Immunohistochemical staining was applied to analyze apoptosis in cardiovascular tissues. The expression levels of apoptotic factor cysteinyl aspartate specific proteinase 3 (Caspase-3), ERS-induced apoptotic factors glucose-regulated protein 78 (GRP78), 94 (GRP94), and ERS-induced apoptosis pathways Caspase-12, C/EBP homologous protein (CHOP), and c-Jun N-terminal kinase (JNK) were analyzed and compared. Hematoxylin-eosin staining revealed that the arterial layers in the normal group were structurally intact. The structural damage to the aortic wall gradually aggravated from the periodontitis group to the vascular calcification group to the combined group. The immunohistochemistry results showed Caspase-3, GRP78, GRP94, and ERS-induced apoptosis pathways in the cardiovascular tissues cells in the periodontitis group, vascular calcification group, and combined group. The Caspase-3, GRP78, GRP94, and CHOP expression levels in the combined group were significantly higher than that in the normal group (P < 0.05); however, the Capase-12 and JNK expression levels in the four groups exhibited no significant differences (P > 0.05). Apoptosis induced by ERS is involved in the effect of periodontitis on vascular calcification and might be mainly achieved through the activation of the CHOP transcription pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call