Abstract

We have earlier reported that the endophyte infection can enhance photosynthetic capacity and antioxidant enzyme activities in rice exposed to salinity stress. Now, the changes in primary photochemistry of photosystem (PS) II induced by Na2CO3 stress in endophyte-infected (E+) and endophyte-uninfected (E-) rice seedlings were studied using chlorophyll a fluorescence (OJIP-test). Performance indices (PIABS and PITotal) of E- and E+ rice seedlings revealed the inhibitory effects of Na2CO3 on PS II connectivity (occurrence of an L-band), oxygen evolving complex (occurrence of a K-band), and on the J step of the induction curves, associated with an inhibition of electron transport from plastoquinone A (QA) to plastoquinone B (QB). In E+ seedlings, Na2CO3 effects on L and K bands were much smaller, or even negligible, and also there was no pronounced effect on the J step. Furthermore, the OJIP parameters indicated that 20 mM Na2CO3 had a greater influence on the photosystem (PS) II electron transport chain than did the 10 mM Na2CO3, and that changes were greater in E- than in E+. Endophyte infection was therefore deemed to enhance the photosynthetic mechanism of Oryza sativa exposed to salinity stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.