Abstract

SUMMARY Uptake, transfer to rough endoplasmic reticulum, and intracellular growth of Brucella abortus were studied in Vero cells treated with endocytic and metabolic inhibitors. Infection of Vero cells was suppressed when inhibitors of energy metabolism (iodoacetate, dinitrophenol), receptor-mediated endocytosis (monodansylcadaverine, amantadine, methylamine), or endosomal acidification (chloroquine, ammonium chloride, monensin) were added to the inoculum. Inhibition was not observed when these drugs were added after the inoculation period. Infection of Vero cells by B abortus was inhibited by dibutyryl-cyclic adenosine monophosphate and Vibrio cholerae enterotoxin, but was stimulated by dibutyryl-cyclic guanosine monophosphate and Escherichia coli heat-stable enterotoxin a. Uptake of B abortus by Vero cells was not prevented by colchicine, but was abolished by cytochalasin B. Uptake of heat-killed B abortus and noninvasive E coli was similar to that of viable brucellae. Intracellular growth of B abortus was not affected by cycloheximide. Results indicate that: B abortus may be internalized by a receptor-mediated phagocytic process; transfer of B abortus from phagosomes to rough endoplasmic reticulum may require endosomal acidification; and replication of B abortus within the rough endoplasmic reticulum may not depend on protein synthesis by the host cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.