Abstract
This study tested the hypothesis that the presence of isolated ankle (A-OA; N=30), knee (K-OA; N=20), or hip (H-OA; N=30) osteoarthritis (OA) compared to asymptomatic controls (N=15) would lead to mechanical changes in the affected joint but also in all other lower limb joints and gait overall. Stride length, stance and swing times, as well as joint angles and moments at the hip, knee, and ankle were derived from 3-D kinematic and kinetic data collected from seven self-selected speed walking trial. Values were compared across groups using a 1×4 ANCOVA, covarying for walking speed. With walking speed controlled, the results indicated a reduction in hip and knee extension and ankle plantar flexion in accordance with the joint affected. In addition, OA in one joint had strong effects on other joints. In both H-OA and K-OA groups the hip never passed into extension, and A-OA subjects significantly changed hip kinematics to compensate for lack of plantar flexion. Finally, OA in any joint led to lower peak vertical forces as well as extension and plantar flexion moments compared to controls. The presence of end-stage OA at various lower extremity joints results in compensatory gait mechanics that cause movement alterations throughout the lower extremity. This work reinforces our understanding of the complex interaction of joints of the lower limb and the importance of focusing on the mechanics of the entire lower limb when considering gait disability and potential interventions in patients with isolated OA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.