Abstract

The effect of enamel coating on the isothermal and cyclic oxidation at 900 °C in air and on the hot corrosion resistance of Ti-24Al-14Nb-3V in both 85% Na2SO4+15%K2SO4 and 15%NaCl+85% Na2SO4 molten mixed salts at 850 °C was investigated. The results indicated that Ti-24Al-14Nb-3V alloy exhibited poor oxidation resistance due to the formation of nonprotective Al2O3+TiO2+AlNbO4 scales and poor hot corrosion resistance due to the spallation of scales formed in molten Na2SO4+K2SO4 and NaCl+Na2SO4. Enamel coating suppressed the migration of oxygen and corrosive ions into the substrate to improve the oxidation and hot corrosion resistance of Ti-24Al-14Nb-3V alloy. However, the dissolution of oxides components of the coating into the molten salts degraded enamel coating and the degradation of the coating involved a process by which Cl− anion penetrated into the substrate through voids in the coating to accelerate corrosion of Ti-24Al-14Nb-3V alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call