Abstract

Effect of ionic liquid pretreatment on enzymatic hydrolysis of cellulose was investigated in terms of the changes in the chemical and physical structure of the preparation. In this case, original cellulose isolated from sugarcane bagasse was subjected to ionic liquid ([Emim]Ac) dissolution at a mild temperature (90°C) followed by regeneration in water and subsequently hydrolyzed by commercial cellulases. The original and regenerated cellulose were thoroughly characterized by XRD, FT-IR, CP/MAS 13C NMR, and SEM. It was found that the original cellulose experienced an increase in glucose content from 80.0–83.3% to 91.6–92.8%, a decrease in the degree of polymerization from 974–1039 to 511–521, a crystal transformation from cellulose I to cellulose II, as well as an increase of surface area during the pretreatment. The results suggested that pretreatment led to effective disruption of cellulose for subsequent enzyme hydrolysis as evidenced by a high glucose conversion yield of 95.2%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.