Abstract

An HK40 steam-reforming tube that ruptured after 35,000 h of operation was analyzed to identify the causes of failure. Analysis of the fracture surface and cross sections indicated extensive and localized corrosion associated with the primary crack site. The fracture surface showed three distinct types of propagation morphology at the inner, middle, and outer portions of the pipe. Severe localized corrosion at interdendritic grain boundaries was detected at the inner pipe, while at the middle, cracks propagated transgranularly along primary carbides. Elemental mapping and line profiles showed a correlation between rupture behavior and the elemental segregation of chromium, manganese, carbon, and silicon at the inner and middle regions. Sulfur, encountered as a contaminant in natural gas, was also detected at these regions. Based on the characteristics exhibited by the fracture surface, failure was attributed to oxidation and fracture enhanced by the elemental redistribution of chromium, carbon, manganese, nickel, and silicon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.