Abstract
High-frame-rate ultrasound is a promising technique for measurement and imaging of cardiovascular dynamics. In high-frame-rate ultrasonic imaging, unfocused ultrasonic beams are used in transmit and multiple focused receiving beams are created by parallel beamforming using the delay and sum (DAS) method. However, the spatial resolution and contrast are degraded compared with conventional beamforming using focused transmit beams. In the present study, the minimum variance beamformer was examined for improvement of the spatial resolution in high-frame-rate ultrasound. In conventional minimum variance beamforming, the spatial covariance matrix of ultrasonic echo signals received by individual transducer elements is obtained without considering the directivity of the transducer element. By omitting the element directivity, the error in estimation of the desired signal (i.e., the echo from the focal point) increases, and as a result, the improvement of the spatial resolution is degraded. In the present study, the element directivity was taken into account in estimation of the spatial covariance matrix used in minimum variance beamforming. The effect of the element directivity on adaptive beamforming was evaluated by computer simulation and basic experiments using a phantom. In parallel beamforming with the conventional DAS beamformer, the lateral spatial resolution, which was evaluated from the lateral full width at half maximum of the echo amplitude profile in the basic experiment, was 0.50 mm. Using conventional amplitude and phase estimation (APES) beamforming, the lateral spatial resolution was improved to 0.37 mm. The lateral spatial resolution was further improved to 0.30 mm using the modified APES beamforming by considering the element directivity. Image contrast and contrast-to-noise ratios, respectively, were -12.3 and 6.5 dB (DAS), -32.8 and -11.3 dB (APES), and -7.0 and 3.1 dB (modified APES).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.