Abstract

With the growing popularity of blueberries and the associated increase in blueberry imports and exports worldwide, delivering fruit with high quality, longer shelf-life, and meeting phytosanitary requirements has become increasingly important. The objective of this study was to determine the effects of electron beam irradiation using a new Electronic Cold-PasteurizationTM (ECPTM) technology on fruit quality, microbial safety, and postharvest disease development in two southern highbush blueberry cultivars, ‘Farthing’ and ‘Rebel’. Fruit packed in clamshells were subjected to four levels of ECPTM irradiation (0, 0.15, 0.5, and 1.0 kGy) and evaluated for fruit quality attributes, surface microbial load, and postharvest disease incidence during various storage times after treatment and cold storage. Overall, there was no effect of irradiation on visual fruit quality in either cultivar. Fruit firmness and skin toughness in ‘Farthing’ was reduced following irradiation at 1.0 kGy, but no such effect was observed in ‘Rebel’. Other fruit quality characteristics such as fruit weight, total soluble solids content, or titratable acidity were not affected. Irradiation at 1.0 kGy significantly reduced total aerobic bacteria and yeast on the fruit surface, and in the case of ‘Rebel’, also levels of total coliform bacteria. There was no significant effect of irradiation on postharvest disease incidence in these trials. Overall, data from this study suggests that an irradiation dose lower than 1.0 kGy using ECPTM can be useful for phytosanitary treatment in blueberry fruit while avoiding undesirable effects on fruit quality in a cultivar-dependent manner.

Highlights

  • Blueberries (Vaccinium spp.) are becoming increasingly popular due to the rising awareness of the health benefits of consuming blueberry fruit, which include decreased risk of cardiovascular diseases, improved cognitive performance, and decrease in aging-related damage [1,2]

  • The objective of this study was to determine the effect of Electronic Cold-PasteurizationTM (ECPTM) on fruit quality attributes, surface microbial load, and postharvest diseases on two southern highbush cultivars

  • ECPTM treatment resulted in a cultivar-specific response on fruit quality

Read more

Summary

Introduction

Blueberries (Vaccinium spp.) are becoming increasingly popular due to the rising awareness of the health benefits of consuming blueberry fruit, which include decreased risk of cardiovascular diseases, improved cognitive performance, and decrease in aging-related damage [1,2]. Important blueberry species include lowbush (Vaccinium angustifolium Ait.) and northern highbush (Vaccinium corymbosum L.) mainly cultivated in the northern parts of the United States, and rabbiteye (V. virgatum Ait.) and southern highbush Camp.) grown mostly in the southern states [3,4]. The United States is the largest producer of blueberries globally [5], supplying 347.7 million kg of cultivated and wild blueberries in Horticulturae 2018, 4, 25; doi:10.3390/horticulturae4030025 www.mdpi.com/journal/horticulturae. The United States plays an important role in the import and export trade of blueberries [7]. In 2016, the United States exported 31.7 million kg of fresh and 25.4 million kg of frozen blueberries and imported 149 million kg of fresh and 75.6 million kg of frozen fruit [8]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call