Abstract

The effect of electron temperature anisotropy on BN dielectric wall sheath characteristics in Hall thruster plasma is studied by using a one-dimensional fluid sheath model with the help of emitted electron velocity distribution and multi-species mixed ion effects. Analytic results show that, in comparison with that of a pure univalent xenon plasma, the sheath potential drop and the critical secondary electron emission coefficient are decreased in mixed valence xenon plasmas, while the primary electron flux at the wall is increased. The electron temperature anisotropy in Hall thrusters thus significantly enhances the electron energy emission coefficient, and further reduces the sheath potential drop while intensifies the electron-wall interaction. Numerical results also indicate that the electron temperature anisotropy influences the potential distribution of space charge saturated sheath remarkably.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.