Abstract

Electron beam welding (EBW) was applied to 50 mm thick damage-tolerant Ti–6Al–4V (TC4-DT) alloy, and microstructure, microhardness and tensile properties of the defect-free welded joints were examined. The results indicated that the microstructure of the base metal is composed of primary α phases and the lamellar (α + β) bimodal structure. For the EBW joint, martensite basketweave microstructure is formed in fusion zone (FZ). Moreover, the heat affected zone (HAZ) near FZ consists of acicular martensite and a small portion of primary α phase. The HAZ near base metal consists of primary α phase and transformed β containing aciculate α. It is found that the boundary of the two portions of the HAZ was dependent on the β phase transus temperature during weld cooling. Microhardness values for FZ and HAZ are higher than that of base metal, and there are the peak values for the HAZ near the weld metal. The fracture locations of all the EBW tensile specimens are in base metal, and the ultimate tensile strength of the joints may reach about 95% of the base metal. In addition, with the depth increasing along the weld thick direction, the grain size of the FZ decreases and microhardness increases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.