Abstract

Undoped and Cu-doped In2O3 films were prepared by radiofrequency magnetron sputtering technique. The effects of Cu doping and high-energy electron beam irradiation on the structural and optical properties of as-prepared films were investigated using techniques such as x-ray diffraction, x-ray photoelectron spectroscopy (XPS), lateral scanning electron microscopic image analysis, energy-dispersive x-ray (EDX) spectroscopy, micro-Raman, and ultraviolet–visible (UV–vis) spectroscopy. Moderate doping of Cu in In2O3 enhanced the intensity of (222) peak, indicating alignment of crystalline grains along . Electron beam irradiation promoted orientation of crystalline grains along in undoped and moderately Cu-doped films. EDX spectroscopic and XPS analyses revealed incorporation of Cu2+ ions in the lattice. The transmittance of Cu-doped films decreased with e-beam irradiation. Systematic reduction of the bandgap energy with increase in Cu doping concentration was seen in unirradiated and electron-beam-irradiated films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call