Abstract
Whey protein isolate (WPI) is a high-quality animal protein resource. The modification of WPI through physical, chemical and biological methods can substantially improve the functional properties of proteins. This study investigated the effect of electron beam irradiation (EBI) on the modification of WPI-xylose glycosylation. The degree of grafting and browning revealed that EBI promoted WPI glycosylation. The maximum emission wavelength of intrinsic fluorescence was red-shifted and the fluorescence intensity was reduced, suggesting that irradiation induced the unfolding of the WPI structure, thereby promoting glycosylation. Fourier-transformed infrared spectroscopy revealed that the covalent binding of the conjugates occurred on the introduction of the hydrophilic groups, resulting in decreased surface hydrophobicity. When compared with conventional wet-heat glycosylation, irradiation-assisted glycosylation improved the emulsifying activity of WPIfrom 179.76 ± 0.83 to 277.83 ± 1.44 m2 g-1, and the emulsifying and rheological properties improved. These results confirmed that EBI can increase the degree of WPI glycosylation and improve the functional properties of proteins, thereby laying a theoretical foundation for the further application of WPI. © 2024 Society of Chemical Industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.