Abstract
Gratzel solar cells are reported in a transparent conducting oxide-less (TCO-less) back-contact dye-sensitized solar cell (BC-DSC) architecture using a stainless steel mesh-protected working electrode along with nanoporous TiO2 semiconductor and metal-free D205 dye. Liquid electrolytes play a significant role for the dye regeneration in the working operation of TCO-less BC-DSCs; therefore, we report the effectiveness of two different commonly utilized electrolytes (iodine- and cobalt-based redox shuttles) for the construction and performance of TCO-less dye-sensitized solar cells (DSCs). Differential performance of DSCs thus fabricated was interpreted utilizing impedance spectral and lifetime analysis. It was found that although utilization of cobalt bipyridyl complex-based electrolyte was able to harvest higher photons in the lower wavelength region (330 to 430 nm) as compared to its iodine electrolyte counterparts, hampered dye regeneration due to reduced driving force and slower ion diffusion in combination with higher charge transport resistance at TiO2 / dye / electrolyte was responsible for relatively hampered photovoltaic performance at peak absorption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Photonics for Energy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.