Abstract

Cu–Si3N4 composite coatings were obtained by co-electrodeposition under DC conditions from a copper sulphate bath containing suspended Si3N4 particles. The effect of some electroplating parameters such as surfactant (SDS) concentration, stirring rate, and particle concentration on microstructural and mechanical properties of the coatings was investigated. The incorporation of Si3N4 particles into the copper matrix resulted in the production of coatings with finer copper grains. The incorporation of Si3N4 particles also led to a change of the preferred growth orientation of copper grains from (200) to (220) crystal face. Cu–Si3N4 composite coatings presented lower friction coefficient and wear loss than pure copper deposit due to the increased hardness related to grain refinement strengthening and dispersion strengthening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.