Abstract

Renewable energy generation is one of the key strategies to solve energy shortages and environmental problems. Among various techniques of renewable energy generation and harvesting, piezoelectric energy harvesting receives huge consideration due to the enormous demand in self-powered electronic devices. Therefore, the development of a piezoelectric nanogenerator (PENG) with effective piezoelectric energy harvesting performance is very important. Herein, we develop zinc oxide polyvinylidene fluoride based (ZnO@PVDF PENG) device and study on the effects of electrode patterns on the piezoelectric performances of the device. We also investigate real application of the device in our daily life. The findings show that interdigitated electrode patterned ZnO@PVDF PENG present the highest piezoelectric performance by harvesting output current, voltage, and power density of 1.15 μA, 50 V, and 20.10 mW/m2, respectively at 12 N. The device also scavenges energy that has capacity to light 20 green light emitting diodes (LEDs) and display a liquid crystal display (LCD) timer for 1 s. Moreover, the ZnO@PVDF PENG) device shows excellent cyclic charging and discharging property, which is very important for practical applications. Therefore, this PENG device is promising candidate to harvest green and renewable energy and use to power electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.