Abstract
The surfaces of hydroxyapatite-glass-titanium (HA-G-Ti) functionally gradient composite and titanium bars were treated with electrochemical apatite deposition, and a cathodic current was applied at 62 degrees C in a solution containing calcium and phosphate ions. Specimens with and without the electrochemical surface treatment were implanted in the femurs of Japanese white rabbits. The rabbits were sacrificed at 3, 6, and 9 weeks after implantation, and the bonding strengths of bone to these specimens were determined by a pull-out method. At 3 and 6 weeks after implantation the specimens with the electrochemical surface treatment showed larger values for the Weibull modulus and characteristic strengths than those of untreated specimens, whereas there was no remarkable difference in the results at 9 weeks. Especially the pull-out strengths of surface-treated specimens were significantly larger than the untreated ones at 3 weeks after implantation. Scanning electron microscopy and Fourier transform infrared absorption spectroscopy of the specimen surface after implantation demonstrated that formation of new bone was enhanced by the electrochemical surface treatment. It can be concluded that the electrochemical surface treatment undoubtedly contributes to the early stage fixation between bone and implant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.