Abstract

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Previous study suggested that toll-like receptor (TLR) signaling pathway contributes to the development and progression of RA. In recent years, acupuncture has become one of the most vital treatments of arthralgia. But little is known about the mechanisms of improving RA by acupuncture. The study studied the effect of electroacupuncture in "Zusanli" and "Kunlun" acupoints on the expression of TLR4, myeloid differentiation factor 88 (MYD88), and NF-κB in adjuvant arthritis rats to clarify the molecular mechanism of acupuncture of RA. A rat model of adjuvant arthritis was established with injection of 0.1 mL Freund complete adjuvant in the right hindlimb footpad. We next punctured the Zusanli and Kunlun acupoints with 0.25 × 40-mm acupuncture needles to 5-mm depth. Then, we performed electroacupuncture treatment for 28 days with frequency of 2 Hz and intensity of 2 mA, once a day and 30 minutes each time. Arthritis index and paw swelling were measured every week. FQ-PCR and western blot were used to detect the expression of TLR4, MYD88, and NF-κB. Paw swelling of rats injected with Freund complete adjuvant was more serious than that of the normal rats, which illustrated the successful establishment of adjuvant arthritis rat model. After treatment for 14 days, the paw swelling and joint symptoms score decreased, paw tissue inflammation eased in the rats of treatment group compared with the model group during the same period. After treatment for 28 days, the expression of TLR4, MYD88, and NF-κB in the ankle bone tissues decreased at both mRNA and protein levels. Stimulation with electric needle in Zusanli and Kunlun acupoints can reduce the expression of TLR4, MYD88, and NF-κB, which play an important role in treatment of adjuvant arthritis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.