Abstract

To observe the effect of electroacupuncture (EA) at back-shu points of five zang on fatigue status, quality of life and motor cortical excitability in patients with chronic fatigue syndrome (CFS), so as to explore the possible mechanism of EA for CFS. A total of 72 patients with CFS were randomized into an EA group (36 cases, 4 cases dropped off) and a sham EA group (36 cases, 3 cases dropped off). In the EA group, EA at Ganshu (BL 18), Xinshu (BL 15), Pishu (BL 20), Feishu (BL 13) and Shenshu (BL 23) was adopted, with continuous wave, 2 Hz in frequency. In the sham EA group, sham EA at non-acupoints (1.5-2.0 cm lateral to back-shu points of five zang) was applied, with shallow needling, and no current was connected. The treatment in the both groups was 20 min each time, once every other day, 2 weeks as one course, 3 courses were required. Before and after treatment, the scores of fatigue scale-14 (FS-14) and the MOS 36-item short form health survey (SF-36) were observed, and cortical excitability (the resting motor threshold [RMT], amplitude of motor-evoked potential [MEP-A] and latency of motor-evoked potential [MEP-L]) was detected in the two groups. After treatment, the physical fatigue score, mental fatigue score and total score of FS-14, as well as RMT of motor cortex in the EA group were decreased compared with those before treatment (P<0.01), the physical fatigue score and total score of FS-14 in the sham EA group were decreased compared with those before treatment (P<0.05); each item score and total score of FS-14 and RMT of motor cortex in the EA group were lower than those in the sham EA group (P<0.01, P<0.05). After treatment, each item score and total score of SF-36 and MEP-A of motor cortex in the EA group were increased compared with those before treatment (P<0.01), which were higher than those in the sham EA group (P<0.01, P<0.05). EA at back-shu points of five zang can effectively improve the fatigue status and quality of life in patients with CFS, its mechanism may be related to the up-regulating excitability of cerebral motor cortex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.